a) ( 2x - 1 )( 2x + 1 ) - 4( x2 + x ) = 16
⇔ 4x2 - 1 - 4x2 - 4x = 16
⇔ -4x - 1 = 16
⇔ -4x = 17
⇔ x = -17/4
b) 5x( x - 2013 ) - x + 2013 = 0
⇔ 5x( x - 2013 ) - ( x - 2013 ) = 0
⇔ ( x - 2013 )( 5x - 1 ) = 0
⇔ \(\orbr{\begin{cases}x-2013=0\\5x-1=0\end{cases}}\)
⇔ \(\orbr{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}\)
a) \(\left(2x-1\right)\left(2x+1\right)-4.\left(x^2+x\right)=16\)
\(4x^2-1-4x^2-4x=16\)
\(-1-4x=16\)
\(-4x=17\)
\(x=-\frac{17}{4}\)
b) \(5x\left(x-2013\right)-x+2013=0\)
\(\left(x-2013\right)\left(5x-1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x-2013=0\\5x-1=0\end{cases}\Rightarrow\hept{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}}\)
a) \(\left(2x-1\right)\left(2x+1\right)-4\left(x^2+x\right)=16\)
\(\Leftrightarrow4x^2-1-4x^2-4x=16\)
\(\Leftrightarrow-1-4x=16\)\(\Leftrightarrow4x=-17\)\(\Leftrightarrow x=-\frac{17}{4}\)
Vậy \(x=-\frac{17}{4}\)
b) \(5x\left(x-2013\right)-x+2013=0\)
\(\Leftrightarrow5x\left(x-2013\right)-\left(x-2013\right)=0\)
\(\Leftrightarrow\left(x-2013\right)\left(5x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2013=0\\5x-1=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2013\\5x=1\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2013\\x=\frac{1}{5}\end{cases}}\)
Vậy \(x=2013\)hoặc \(x=\frac{1}{5}\)