\(42-2\left(32-2^{x+1}\right)=10\)
\(\Leftrightarrow2^{x+1}=16\)
\(\Leftrightarrow2^{x+1}=2^4\)
=> x = 4
\(42-2.\left(32-2^{x+1}\right)=10\)
\(2.\left(32-2^{x+1}\right)=42-10\)
\(2.\left(32-2^{x+1}\right)=32\)
\(32-2^{x+1}=32:2\)
\(32-2^{x+1}=16\)
\(2^{x+1}=32-16\)
\(2^{x+1}=16\)
\(2^{x+1}=2^4\)
\(x+1=4\)
\(x=4-1\)
\(x=3\)
Làm lại :<
\(42-2\left(32-2^{x+1}\right)=10\)
\(\Leftrightarrow2^{x+1}=16\)
\(\Leftrightarrow x^{x+1}=2^4\)
\(\Leftrightarrow x=4-1\)
<=> x = 3