tìm \(x_1;x_2;x_3;......;x_{2011}\) biet
\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=.....=\frac{x_{2010}-2010}{1}\)va \(x_1+x_2+.....+x_{2011}=2\left(1+2+3+...+2010\right)\)
tìm \(x_1;x_2;x_3;......;x_{2011}\) biet
\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=.....=\frac{x_{2010}-2010}{1}\)va \(x_1+x_2+.....+x_{2011}=2\left(1+2+3+...+2010\right)\)
\(\frac{x_1-1}{2010}=\frac{x_2-2}{2009}=.....=\frac{x_{2010}-2010}{1}\)va \(x_1+x_2+x_3+...+x_{2011}=2\left(1+2+3+...+2011\right)\)
cho \(\frac{_{x_1}}{x_2}=\frac{x_2}{x_3}=\frac{x_3}{x_4}=\frac{x_4}{x_5}=...=\frac{x_{2008}}{x_{2009}}\). Chứng minh rằng: \(\left(\frac{x_1+x_2+x_3+x_4+...+x_{2008}}{x_2+x_3+x_4+x_5+...+x_{2009}}\right)^{2008}\) = \(\frac{x_1}{x_{2009}}\)
tìm \(x_1,x_2,x_3.......,x_9\)
\(\frac{x_{1-1}}{9}=\frac{x_{2-2}}{8}=\frac{x_3-3}{7}=....=\frac{x_{9-9}}{1}\) và \(x_1+x_2+x_3+...+x_9=90\)
Cho:
\(\frac{x_1-1}{2017}=\frac{x_2-2}{2016}=\frac{x_3-3}{2015}=...=\frac{x_{2017}-2017}{1}vàx_1+x_2+...+x_{2017=2017\cdot2018.}Tìmx_1,x_2,x_{3,...,x_{2017}?}\)
Tìm các số \(x_1,x_2,...,x_{n-1},x_n\), biết rằng:
\(\frac{x_1}{a_1}=\frac{x_2}{a_2}=\frac{x_3}{a_3}=....=\frac{x_{n-1}}{a_{n-1}}=\frac{x_n}{a_n}\)và \(x_1+x_2+x_3+...+x_n=c\)
\(\left(a_1\ne0,a_2\ne0,....,a_n\ne0,a_1+a_2+....+a_n\ne0\right)\)
Cho các số \(x_1;x_2;x_3\) thỏa mãn \(\frac{x_1-1}{3}=\frac{x_2-2}{2}=\frac{x_3-3}{1}\) và \(x_1+x_2+x_3=30\). Khi đó \(x_1.x_2-x_2.x_{3=...}\) -chi tiết-
cho \(x_1+x_2+x_3+...+x_{50}+x_{51}=0\)và\(x_1+x_2=x_3+x_4=x_5+x_6=...=x_{49}+x_{50}=1\)Tính \(x_{50}\)