Gọi d là ƯC(7n + 3, 8n – 1). Suy ra:
7n + 3 ⋮ d và 8n – 1⋮d
=> 56n + 24 ⋮d và 56n – 7 ⋮ d
=> 31 ⋮ d
=> d ∈ {1; 31}
Nếu 7n + 3 ⋮ 31
=> 7n + 3 – 31 ⋮ 31
=> 7n – 28 ⋮ 31
=> 7.(n – 4) 31, vì: (7, 31) = 1
=> n – 4 ⋮ 31
=> n – 4 = 31k (Với k thuộc N)
=> n = 31k + 4
Thay vào 8n – 1 = 8.(31k + 4) – 1 = 8.31k + 31 = 31.(8k + 1) 31.
=> UCLN(7n + 3, 8n – 1) = 31 nếu n = 31k + 4 (Với k thuộc N).
Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N).
Để hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau <=> UCLN(7n + 3, 8n – 1) = 1
<=> n ≠ 31k + 4 (Với k thuộc N).
Kết luận:
+) Với n = 31k + 4 thì UCLN(7n + 3, 8n – 1) = 31 (Với k thuộc N)
+) Với n ≠ 31k + 4 thì UCLN(7n + 3, 8n – 1) = 1 (Với k thuộc N)
+) Với n ≠ 31k + 4 thì hai số 7n + 3 và 8n – 1 là hai số nguyên tố cùng nhau
hình như sai sai
ngược lại nếu đúng cho mk