Ta có : \(n^4+4=\left[\left(n-1\right)^2+1\right]\left[\left(n+1\right)^2+1\right]\)
Do đó :
\(M=\frac{1\left(2^2+1\right)}{\left(2^2+1\right)\left(4^2+1\right)}.\frac{\left(4^2+1\right)\left(6^2+1\right)}{\left(6^2+1\right)\left(8^2+1\right)}.\frac{\left(8^2+1\right)\left(10^2+1\right)}{\left(10^2+1\right)\left(12^2+1\right)}...\frac{\left(16^2+1\right)\left(18^2+1\right)}{\left(18^2+1\right)\left(20^2+1\right)}\)
\(M=\frac{1}{20^2+1}=\frac{1}{401}\)