Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
PVBach Changel

Tìm tất các cặp số nguyên dương x, y thỏa mãn : x^(y)+y^(x) = 100

zZz Cool Kid_new zZz
25 tháng 2 2019 lúc 20:53

Do x,y bình đẳng như nhau,giả sử \(x\ge y\)

Khi đó:\(100=x^y+y^x\ge y^y+y^y=2y^y\)

\(\Rightarrow50\ge y^y\)

Với \(y>3\Rightarrow50\ge y^y>y^3\)

\(\Rightarrow4>\sqrt[3]{50}>y\)

\(\Rightarrow3< y< 4\left(KTM\right)\)

\(\Rightarrow y\le3\Rightarrow y\in\left\{1;2;3\right\}\)

Với \(y=1\)

\(\Rightarrow100=x^y+y^x=x+1^x=x+1\)

\(\Rightarrow x=99\left(TM\right)\)

Với \(y=2\)

\(\Rightarrow100=x^2+2^x\)

\(\Rightarrow2^x=100-x^2< 100\)

\(\Rightarrow x< 7\)

Mà x chẵn \(\Rightarrow x\in\left\{2;4;6\right\}\)

Thử vào thấy x=6 thỏa mãn.

Với \(y=3\)

\(\Rightarrow100=x^3+3^x\)

\(\Rightarrow x^3=100-3^x\)

\(\Rightarrow x< 5\)

Mà \(x\ge y\Rightarrow3\le x< 5\)

\(\Rightarrow x=3\left(h\right)x=4\)

Thử vào ta thấy không có x thỏa mãn.

Vậy các cặp số \(\left(x;y\right)\) cần tìm là:\(\left(99;1\right);\left(6;2\right)\) và các hoán vị của chúng

P/S:\(\left(h\right)\) là hoặc.

No choice
25 tháng 2 2019 lúc 21:13

Ta có : 2 số x và y bình đẳng, không mất tính tổng quát

Các TH :  

+ TH1: x = 1  => 1y + y1 = 100 => y + 1 = 100 => y = 99 

           Tìm được : x = 1 ; y = 99

+ TH2: x = 2 => 2y + y2 = 100 => 1 < y < 7  ( Nếu y = 1 thì lại rơi vào TH 1 )

   Nếu : y = 6 => 26 + 62 = 100 ( T/m ) =>  Tìm đc x = 2; y = 6

            y < 6  => 2y + y2 < 100 ( loại )

+ TH3 : x = 3 => 3y + y3 = 100  => 2 < y < 4 

      Nếu y = 3 => 33 + 33 = 54 < 100 ( loại )

+ TH4 : x \(\ge\)4  => 4y + y4 \(\ge\)44 + 44 = 512 > 100  ( y \(\ge\)4 vì nếu y < 4 sẽ rơi vào các TH trước )

       Vậy  ( x ; y ) = ( 1 ; 99 ) ; ( 99 ; 1 ) ; ( 2 ; 6 ) ; ( 6 ; 2 )

    


Các câu hỏi tương tự
Hà Nguyên Đặng Lê
Xem chi tiết
Nguyễn Ngọc Minh Anh
Xem chi tiết
Vu Quynh Ly
Xem chi tiết
duongtricao
Xem chi tiết
TalaTeleĐiĐâuĐấy?
Xem chi tiết
Súp bờ hách cơ
Xem chi tiết
Lưu Trí Trọng
Xem chi tiết
Phạm Chí Dũng
Xem chi tiết
sssss
Xem chi tiết