Ta có \(\frac{n^3-2n^2+3}{n-2}=\frac{n^2\left(n-2\right)}{n-2}+\frac{3}{n-2}=n^2+\frac{3}{n-2}\)
Để phân số trên là số nguyên thì \(\frac{3}{n-2}\)cũng là số nguyên
=>n-2 thuộc Ư(3)={-1;1;-3;3}
Ta có bảng sau:
n-2 | -1 | 1 | -3 | 3 |
n | 1 | 3 | -1 | 5 |
Vậy để \(\frac{n^3-2n^2+3}{n-2}\)là số nguyên thì n={1;-1;3;5}
Gợi ý nè:
Bạn phân tích phân số \(\frac{n^3-2n^2+3}{n-2}\) ra....
Rồi lập bảng xem số nào thuộc giá trị của \(n\in Z\)
Kết quả nè:
\(n=1;-1;3;5\)