Áp dụng bđt quen thuộc \(\frac{m^2}{a}+\frac{n^2}{b}\ge\frac{\left(m+n\right)^2}{a+b}\left(a;b>0\right)\)đc
\(9=\frac{x^2}{y}+\frac{y^2}{x}\ge\frac{\left(x+y\right)^2}{x+y}=x+y\)
\(\Rightarrow x+y\le9\)
Giả sử \(x\ge y\)thì \(2y\le x+y\le9\)
\(\Rightarrow y\le\frac{9}{2}=4,5\)
Mà y nguyen dương nên \(y\in\left\{1;2;3;4\right\}\)
Với y = 1 ; 2; 3 ; 4 thì x = ...
Tương tự vs trường hợp x < y ta cũng thu đc đáp án như vậy
Vậy ......
Nếu x hoặc y =1;2;3;4 thì sẽ ra rất nhiều nghiệm nhận loại sao