Gọi x,y,z là các cạnh của tam giác vuông \(1\le x\le y< z\)
Ta có: \(\hept{\begin{cases}x^2+y^2=z^2\left(\cdot\right)\\xy=2\left(x+y+z\right)\left(\cdot\cdot\right)\end{cases}}\)
Từ \(\left(\cdot\right)\)ta có: \(z^2=\left(x+y\right)^2-2xy=\left(x+y\right)^2-4\left(x+y+z\right)=\left(x+y\right)^2-4\left(x+y\right)-4z\)
\(\Leftrightarrow z^2+4z+4=\left(x+y^2\right)-4\left(x+y\right)+4\Leftrightarrow\left(z+2\right)^2=\left(x+y+2\right)^2\)
\(\Leftrightarrow x+y-2=z+2\left(vi,x+y\ge2\right)\)
Thay z = x + y - 4 vào \(\left(\cdot\cdot\right)\)ta được
\(\left(x-4\right)\left(y-4\right)=8\Leftrightarrow\hept{\begin{cases}x-4=1\\y-4=8\end{cases}hoac\hept{\begin{cases}x-4=2\\y-4=4\end{cases}\left(vi,y\ge x\right)}}\)
\(\Leftrightarrow\hept{\begin{cases}x=5\\y=12\end{cases}hoac\hept{\begin{cases}x=6\\y=8\end{cases}}}\)
Vậy độ dài các cạnh tam giác vuông cần tìm là: 5,12,13 hoặc 6,8,10.