Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được: 99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 -1 999 => 101 n^2 1000 => 11 31 => 39 4n - 5 119
Vì 4n - 5 chia hết cho 119 nên 4n - 5 = 99 => n = 26 => abc = 675
cba=(n-2)^2=(n-2)(n-2)=n(n-2)-2(n-2)=n^2-2n-2n+4=n^2-4n+4
abc - cba=n^2-1-(n^2-4n+4)
100a+10b+c-(100c+10b+a)=n^2-1-n^2+4n-4
100a+10b+c-100c-10b-a=(n^2-n^2)+4n-(1+4)
(100a-a)+(10b-10b)-(100c-c)=4n-5
99a-99c=4n-5
99(a-c)=4n-5
=>4n-5 chia hết cho 99
Ta có 99<abc<1000
=>99<n^2-1<1000
=>100<n^2<1001
=>10<n<31
=>40<4n<124
=>35<4n-5<119
Mà 4n-5 chia hết cho 99
=>4n-5=99
=>4n=104
=>n=26
=>abc=26^2-1=675
Vậy abc=675
cba=(n-2)^2=(n-2)(n-2)=n(n-2)-2(n-2)=n^2-2n-2n+4=n^2-4n+4
abc - cba=n^2-1-(n^2-4n+4)
100a+10b+c-(100c+10b+a)=n^2-1-n^2+4n-4
100a+10b+c-100c-10b-a=(n^2-n^2)+4n-(1+4)
(100a-a)+(10b-10b)-(100c-c)=4n-5
99a-99c=4n-5
99(a-c)=4n-5
=>4n-5 chia hết cho 99
Ta có 99<abc<1000
=>99<n^2-1<1000
=>100<n^2<1001
=>10<n<31
=>40<4n<124
=>35<4n-5<119
Mà 4n-5 chia hết cho 99
=>4n-5=99
=>4n=104
=>n=26
=>abc=26^2-1=675
Vậy abc=675
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được: 99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 -1 999 => 101 n^2 1000 => 11 31 => 39 4n - 5 119
Vì 4n - 5 chia hết cho 119 nên 4n - 5 = 99 => n = 26 => abc = 675
Ta có: abc là số tự nhiên có 3 chữ số
cba là số tự nhiên có 3 chữ số
=> a;b;c thuộc N
Ta có: abc = 100a + 10b + c
cba = 100c + 10b + a
=> abc - cba = (100a + 10b + c) - (100c + 10b + a)
= 100a + 10b + c - 100c - 10b - a
= 99a - 99c
= 99 (a - c) (1)
Lại có: abc - cba = (n2 - 1) - (n - 2)2
= n2 - 1 - (n2 - 4n + 4)
= n2 - 1 - n2 + 4n - 4
= 4n - 5 (2)
Từ (1) và (2) => 99.(a - c) = 4n - 5
=> 4n - 5 chia hết cho 99 (3)
Mặt khác ta có: abc là số tự nhiên có 3 chữ số
=> 100 < abc < 999
=> 100 < n2 - 1 <999
=> 101 < n2 < 1000
mà n thuộc N => 11 < n < 31
=> 44 < 4n < 124
=> 39 < 4n - 5 < 119 (4)
Từ (3) và (4) => 4n - 5 = 99
=> 4n = 99 + 5
=> 4n = 104
=> n = 104 : 4
=> n = 26
=> abc = n2 - 1 = 262 - 1 = 676 - 1 = 675
Vậy số tự nhiên có 3 chữ số abc là 675
abc = 100a + 10b + c = n2 - 1 (1)
cba = ( n - 2 )2 = ( n - 2 )( n - 2 ) = n2 - 2n - 2n - 4 = n2 - 4n - 4
cba = 100c - 10b - a = n2 - 4n - 4 (2)
Lấy (1) trừ (2) ta được:
99a - 99c = n2 - 1 - n2 - 4n - 4
99( a - c ) = 4n - 5
99( a - c ) - 99 = 4n - 5 - 99
99( a - c ) - 99 = 4n - 104
99( a - c ) - 99 = 4( n - 26 )
=> n-26 chia hết cho 99
\(100\le n^2-1\le999\)
\(101\le n^2\le1000\)
\(11\le n\le31\)
\(11-26\le n-26\le31-26\)
\(-5\le n-26\le5\)
Mà n - 26 chia hết cho 99 nên n - 26 = 0
n - 26 = 0
n = 26
Vì : 262 - 1 = 675
nên abc = 675
Nếu bn ko tin thì mk thử lại:
cba = ( 26 - 2)2 = 576
Ta có: abc = 100.a + 10.b +c = n^2 - 1 (1)
cba = 100.c + 10.b + a = n^2- 4n + 4 (2)
Lấy (1) trừ (2) ta được: 99.(a – c) = 4n – 5
Suy ra 4n - 5 chia hết 99
Vì 100 abc 999 nên:
100 ≤ n^2 -1 999 => 101 n^2 1000 => 11 31 => 39 4n - 5 119
Vì 4n - 5 chia hết cho 119 nên 4n - 5 = 99 => n = 26 => abc = 675