Đặt: \(t^2=x^2+x+6\)
=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)
=> \(4t^2-\left(2x+1\right)^2=23\)
<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)
Chia các trường hợp: => x và t
Đặt: \(t^2=x^2+x+6\)
=> \(4t^2=4x^2+4x+24=\left(2x+1\right)^2+23\)
=> \(4t^2-\left(2x+1\right)^2=23\)
<=> \(\left(2t-2x-1\right)\left(2t+2x+1\right)=23\)
Chia các trường hợp: => x và t
tìm tất cả các số hữu tỉ x sao cho giá trị biểu thức x^2 + x + 6 là một số chính phương
Tìm các số nguyên tố x sao cho giá trị của biểu thức A là số chính
phương : A = x 2 - 6x + 6 .
Tìm các số nguyên tố x sao cho giá trị của biểu thức A là số chính
phương : A = x2 - 6x + 6 .
Tìm các số nguyên tố x sao cho giá trị của biểu thức A là số chính
phương : A = x2 - 6x + 6 .
Tìm các số nguyên tố x sao cho giá trị của biểu thức A là số chính
phương : A = x2 - 6x + 6 .
cho biểu thức A=(x+3/x-2+x+2/3-x+x+2/x^2-5x+6):(1-x/x+1)
a.rút gọn biểu thức A
b.tính giá trị của x,biết A>1
c.tìm tất cả các giá trị nguyên của x để biểu thức B=3.A nhận giá trị là một số nguyên
d Khi x>2,tìm giá trị nhỏ nhất của biểu thức C=A.x
cho biểu thức A=(x+3/x-2+x+2/3-x+x+2/x^2-5x+6):(1-x/x+1)
a.rút gọn biểu thức A
b.tính giá trị của x,biết A>1
c.tìm tất cả các giá trị nguyên của x để biểu thức B=3.A nhận giá trị là một số nguyên
d Khi x>2,tìm giá trị nhỏ nhất của biểu thức C=A.x
1) tìm tất cả giá trị nguyên của x để giá trị của biểu thức \(\frac{x}{x-6}-\frac{6}{x-9}\) lớn hơn 1
2) Cho số n thoả mãn bất phương trình 2(n+2)2 + n(1-n) lớn hơn hoặc bằng (>=) (n-5)(n+5). xác định tất cả các số n không âm để 7-3n là một số nguyên
Đây là đề tuyển sinh 8 lên 9.. mong mọi người giúp đỡ ạ...
Cho biểu thức A=x^2+3/x-2
a)Tìm điều kiện của x để giá trị của biểu thức A không xác định được
b)với nhứng giá trị nào của x thì biểu thức a nhận giá trị là số âm
c) Tìm tất cả các số nguyên x để biểu thức A nhận giá trị nguyên