Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Minh Anh

Tìm tất cả các số nguyên tố p sao cho 

\(\frac{p^2-p-2}{2}\)là lập phương của một số tự nhiên

Đoàn Đức Hà
9 tháng 3 2021 lúc 17:11

Giả sử tồn tại số \(p\)thỏa mãn. 

Ta đặt \(\frac{p^2-p-2}{2}=a^3\).

\(p=2\)thỏa mãn.

\(p>2\)do là số nguyên tố nên \(p\)lẻ.

Ta có: \(\frac{p^2-p-2}{2}=a^3\Leftrightarrow p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)\)suy ra \(p\)là ước của \(a+1\)hoặc \(a^2-a+1\).

+) \(p|a+1\)\(\frac{p^2-p-2}{2}=a^3\)suy ra \(a< p\Rightarrow a+1=p\).

Thế vào cách đặt ban đầu ta được \(\frac{\left(a+1\right)^2-\left(a+1\right)-2}{2}=a^3\Leftrightarrow2a^3-a^2-a+2=0\)

\(\Leftrightarrow a=-1\)không thỏa. 

+) \(p|a^2-a+1\): Đặt \(a^2-a+1=kp\)(1).

\(p\left(p-1\right)=2\left(a+1\right)\left(a^2-a+1\right)=2\left(a+1\right)kp\)

\(\Rightarrow p-1=2\left(a+1\right)k\Leftrightarrow p=2k\left(a+1\right)+1\)thế vào (1): 

\(a^2-a+1=k\left[2k\left(a+1\right)+1\right]\)

\(\Leftrightarrow a^2-\left(2k^2+1\right)a-2k^2-k+1=0\)

\(\Delta=\left(2k^2+1\right)^2-4\left(-2k^2-k+1\right)=4k^4+12k^2+4k-3\).

Ta cần tìm số tự nhiên \(k\)để \(\Delta\)là số chính phương. 

Ta có: \(4k^4+12k^2+4k-3>4k^4+8k^2+4=\left(2k^2+2\right)^2\)

\(4k^4+12k^2+4k-3< 4k^4+16k^2+16=\left(2k^2+4\right)^2\)

Theo nguyên lí kẹp suy ra \(4k^4+12k^2+4k-3=\left(2k^2+3\right)^2\)

\(\Leftrightarrow4k-3=9\Leftrightarrow k=3\).

Với \(k=3\)\(a^2-19a-20=0\Rightarrow a=20\Rightarrow p=127\).

Vậy \(p\in\left\{2,127\right\}\).

Khách vãng lai đã xóa

Các câu hỏi tương tự
ghgfh ghsjg
Xem chi tiết
tuan le
Xem chi tiết
Xem chi tiết
Linhhhhhh
Xem chi tiết
buidatkhoi
Xem chi tiết
buidatkhoi
Xem chi tiết
Nguyễn Việt Nga
Xem chi tiết
Khiêm Nguyễn Gia
Xem chi tiết
Nguyễn Anh Kim Hân
Xem chi tiết