Lời giải:
Gọi $d=ƯCLN(n+19, n-2)$
$\Rightarrow n+19\vdots d; n-2\vdots d$
$\Rightarrow (n+19)-(n-2)\vdots d$
$\Rightarrow 21\vdots d$
Để phân số đã cho tối giản, thì $(21,d)=1$, hay $(3,d)=(7,d)=1$
Để $(d,3)=1$ thì $n-2\not\vdots 3$
$\Rightarrow n\neq 3k+2$
Để $(d,7)=1$ thì $n-2\not\vdots 7$
$\Rightarrow n\neq 7m+2$
Vây $n$ không chia 3 dư 2 và không chia 7 dư 2 thì phân số trên tối giản.