Để \(\frac{5}{2x^2+1}\) là số nguyên thì \(5⋮\left(2x^2+1\right)\) \(\Rightarrow\) \(\left(2x^2+1\right)\inƯ\left(5\right)\)
Mà \(Ư\left(5\right)\left\{1;-1;5;-5\right\}\)
Suy ra :
\(2x^2+1\) | \(1\) | \(-1\) | \(5\) | \(-5\) |
\(x\) | \(0\) | \(\varnothing\) | \(\sqrt{2}\) | \(\varnothing\) |
Vì \(x\inℚ\) ( x là số hữu tỉ ) nên \(x=0\)
Vậy \(x=0\)