64x^6-112x^4+56x^2-7=2\sqrt{1-x^2} - Diễn đàn Toán học
64x^6-112x^4+56x^2-7=2\sqrt{1-x^2} - Diễn đàn Toán học
Tìm tất cả các giá trị thực của tham số m để phương trình
\(\left(m+3\right)x-2\sqrt{x^2-1}+m-3=0\) 0 có nghiệm x>=1
Bài 1: Tìm tất cả các cặp số nguyên (x;y) thỏa mãn: x2 - 2xy - x + y + 3 = 0
Bài 2: Giải phương trình nghiệm nguyên: ( y2+1 )( 2x2+x+1) = x+5
Bài 3: Cho các số thực dương a,b thỏa mãn a + b = 2.
Tìm giá trị nhỏ nhất của biểu thức : P = \(\frac{a}{\sqrt{4-a^2}}+\frac{b}{\sqrt{4-b^2}}\)
1.Giải các phương trình sau:
a) 2x2 +16 -6 = 4\(\sqrt{x\left(x+8\right)}\)
b) x4 -8x2 + x-2\(\sqrt{x-1}\) + 16=0
2. Gọi x1;x2 là nghiệm phương trình x2 -3x -7 =0. Không giải phương trình tính các giá trị của biểu thức sau:
A = \(\dfrac{1}{x_1-1}+\dfrac{1}{x_2-1}\)
B= \(x^2_1+x_2^2\)
C= |x1 - x2|
D= \(x_1^4+x_2^4\)
E= (3x1 + x2) (3x2 + x1)
b1:tìm nghiệm nguyên của phương trình sau: \(5x^2+2y^2+10x+4y=6\)
b2: cho số thực A=\(\sqrt{6-3\sqrt{2+\sqrt{3}}}-\sqrt{2+\sqrt{2+\sqrt{3}}}\)
có là 1 nghiệm của pt \(\left(x^2-8\right)=32\)ko
Tìm tất cả các giá trị thực của tham số m để phương trình \(x^2-3mx+m+1=0\)
có hai nghiệm phân biệt và
một nghiệm gấp đôi nghiệm còn lại.
tìm tất cả các giá trị của tham số m để phương trình sau có hai nghiệm phân biệt: 10x2+8x+4=m(2x+1).\(\sqrt{x^2+1}\)
Tìm tổng lập phương tất cả các nghiệm của phương trình \(\sqrt[3]{2x-3}+\sqrt[3]{x-2}=1\)
Bài 1:Giải các phương trình sau:
a)\(2x+1+4\sqrt{x+1}=2\sqrt{1-2x}\)
b)\(x^2+4x+7=\left(x+4\right)\sqrt{x^2+7}\)
c)\(3x+2\left(\sqrt{x-4}+6\right)=12\sqrt{x}\)
d)\(\sqrt{x-2}+\sqrt{7-x}=x^2+7x-27\)
e)\(\left(\sqrt{2-x}+1\right)\left(\sqrt{x+3}-\sqrt{x-1}\right)=4\)
Bài 2:Cho a,b,c thỏa mãn a+b+c=1
Chứng minh\(\sqrt{4a+1}+\sqrt{4b+1}+\sqrt{4c+1}\le\sqrt{21}\)
Bài 3:Giải hệ phương trình:
\(\hept{\begin{cases}x+y+xy=2+3\sqrt{2}\\^{x^2+y^2=6}\end{cases}}\)
Bài 4:Tìm các cặp số nguyên (x;y) thỏa mãn:
\(x^2+2y^2+2xy-5x-5y=-6\)
Để (x+y) nguyên
Bài 5:Cho các số thực x,y,z thỏa mãn điều kiện
\(x+y+z+xy+yz+xz=6\)
Chứng minh rằng \(x^2+y^2+z^2\ge3\)
Bài 6:Cho 4 số thực a,b,c,d thỏa mãn các điều kiện:
\(a\ne0\)\(4a+2b+c+d=0\)
Chứng minh \(b^2\ge4ac+4ad\)
Bài 7:Với ba số thực a,b,c thỏa mãn điều kiện \(a\left(a-b+c\right)< 0\)Chứng minh phương trình \(ax^2+bx+c=0\)(ẩn x) luôn có hai nghiệm phân biệt
Bài 1: Tìm các số thực x để biểu thức \(\sqrt[3]{3+\sqrt{x}}+\sqrt[3]{3-\sqrt{x}}\) là số nguyên.
Bài 2: Chứng minh rằng với mọi số tự nhiên n dương, phương trình sau không có nghiệm hữu tỷ:
\(x^2+2\left(n-1\right)\left(n+1\right)x+1-6n^3-13n^2-6n=0\)
Bài 3: Tìm các số hữu tỷ a và b thỏa mãn \(\sqrt{a\sqrt{7}}-\sqrt{b\sqrt{7}}=\sqrt{11\sqrt{7}-28}\)