Đáp án D
BPT <=> 23x + (m – 1)3x + m – 1 > 0
<=> 23x – 3x – 1 + m(3x + 1) > 0
⇔ m > 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ (*).
Xét hàm số f x = 3 x - 8 x + 1 3 x + 1 ; ∀ x ∈ ℝ , ta có
f ' x = 8 x ln 3 - ln 8 . 3 x - ln 8 3 x + 1 2 < 0 ; ∀ x ∈ ℝ .
Suy ra f(x) là hàm số nghịch biến trên ℝ .
Mà lim x → - ∞ f x = 1 , do đó
m i n x ∈ ℝ f x = lim x → - ∞ f x = 1 .
Vậy (*) ⇔ m ≥ m i n x ∈ ℝ f x = 1 ⇒ m ≥ 1 là giá trị cần tìm.