Chọn B
[Phương pháp tự luận]
y ' = 3 x 2 - 3 m
Hàm số có 2 cực trị khi và chỉ khi m > 0
Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là : M ( m ; - 2 m m + 2 )
Phương trình đt MN : 2 m x + y - 2 = 0
⇔ m = 1 ± 3 2
Chọn B
[Phương pháp tự luận]
y ' = 3 x 2 - 3 m
Hàm số có 2 cực trị khi và chỉ khi m > 0
Khi đó tọa độ 2 điểm cực trị của đồ thị hàm số là : M ( m ; - 2 m m + 2 )
Phương trình đt MN : 2 m x + y - 2 = 0
⇔ m = 1 ± 3 2
Tìm tất cả các giá trị của tham số thực m để đường thẳng qua 2 điểm cực trị của đồ thị hàm số: y = x3-3mx+ 2 cắt đường tròn tâm I (1; 1) bán kính bằng 1 tại 2 điểm A và B mà diện tích tam giác IAB lớn nhất .
A . m = 1 ± 2 2 .
B . m = 1 ± 3 2 .
C . m = 1 ± 5 2 .
D . m = 1 ± 6 2 .
Cho (Cm) là đồ thị của hàm số y = x 3 + 3 m x + 1 (với m ∈ ( - ∞ ; 0 ) là tham số thực). Gọi d là đường thẳng đi qua hai điểm cực trị của (Cm). Tìm số các giá trị của m để đường thẳng d cắt đường tròn tâm I(1;0) bán kính R=3 tại hai điểm phân biệt A, Bsao cho diện tích tam giác IAB đạt giá trị lớn nhất.
A.3
B.0
C.1
D.2
Gọi m 0 là giá trị của tham số m để đường thẳng đi qua điểm cực đại và cực tiểu của đồ thị hàm số y = x 3 - 6 m x + 4 cắt đường tròn tâm I(1;0), bán kính bằng 2 tại hai điểm phân biệt A, B sao cho diện tích tam giác IAB đạt giá trị lớn nhất. Mệnh đề nào sau đây đúng:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y = 2 x 3 - 3 ( m + 1 ) x 2 + 6 m x có hai điểm cực trị A , B sao cho đường thẳng AB vuông góc với đường thẳng : y = x + 2 .
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số y=2x3-3( m+1) x2+ 6mx có hai điểm cực trị A; B sao cho đường thẳng AB vuông góc với đường thẳng y= x+ 2.
A. 0; 3
B. 2; 4
C. 0; 2
D. 1; 3
Cho hàm số: y = x3+2mx2+3(m-1)x+2 có đồ thị (C) . Đường thẳng d: y= - x+2 cắt đồ thị (C) tại ba điểm phân biệt A(0; -2); B và C. Với M(3;1) giá trị của tham số m để tam giác MBC có diện tích bằng 2 7 là
A. m=-1
B. m=-1 hoặc m=4
C. m=4
D. Không tồn tại m
Gọi A, B là hai điểm cực trị của đồ thị hàm số f(x) = x3 - 3x2 + m với m là tham số thực khác 0. Tìm tất cả các giá trị thực của tham số m để trọng tâm tam giác OAB thuộc đường thẳng 3x + 3y - 8 = 0.
A. m = 5
B. m = 2
C. m = 6
D. m = 4
Cho hàm số y = x 4 - 2 ( 1 - m 2 ) x 2 + m + 1 . Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất
A. m = - 1 2
B. m = 1 2
C. m = 0
D. m = 1
Có bao nhiêu giá trị thực của tham số m để đồ thị hàm số y = x 3 - 3 m x + 2 có hai điểm cực trị A và B và đường thẳng AB cắt đường tròn x - 1 2 + y - 1 2 = 3 tại hai điểm phân biệt M, N sao cho khoảng cách MN lớn nhất
A. 1
B. 2
C. 5
D. Vô số