Cho hàm số f(x) = x - m 2 + m x + 1 với m là tham số thực. Tìm tất cả các giá trị của m để hàm số có giá trị nhỏ nhất trên đoạn [0; 1] bằng – 2.
A. m= 1
B. m= -2
C. m= -1
D. m= -1 hoặc m= 2
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số
f(x)= 3 x + a - 1 khi x ≤ 0 1 + 2 x - 1 x khi x > 0
Tìm tất cả giá trị thực của a để hàm số đã cho liên tục trên R
A. a=1
B. a=3
C. a=4
D. a=2
Cho hàm số y = f(x) có f'(x)>0 ∀ x ∈ ℝ . Tìm tập hợp tất cả các giá trị thực của x để f 1 x < f ( 1 )
Cho hàm số y=f(x) có f'(x)>0 với mọi x. Tìm tập hợp tất cả các giá trị thực của x để f 1 x < f(1)
A.
B.
C.
D.
Cho hàm số y=f(x) có đạo hàm liên tục trên R, với f x > 0 , ∀ x ∈ ℝ và f 0 = 1 . Biết rằng f ' x + 3 x x − 2 f x = 0 , ∀ x ∈ ℝ . Tìm tất cả các giá trị thực của tham số m để phương trình f x + m = 0 có bốn nghiệm thực phân biệt.
A. 1 < m < e 4 .
B. − e 6 < m < − 1.
C. − e 4 < m < − 1.
D. 0 < m < e 4 .
Cho hàm số f(x) = 2 x + m x + 1 với m là tham số thực. Tìm tất cả các giá trị của m > 1 để hàm số có giá trị lớn nhất trên đoạn [ 0; 4] nhỏ hơn 3.
A. 1<m< 3
B. m ∈ ( 1 ; 3 5 - 4 )
C. m ∈ ( 1 ; 5 )
D. 1<m≤ 4
Cho hàm số y = f ( x ) = a x 4 + b x 2 + c ( a ≠ 0 ) có đồ thị như hình bên. Tất cả các giá trị của m để phương trình f ( x ) + m + 1 = 0 có 7 nghiệm phân biệt là:
A. m=-2.
B. m=-1.
C. m=2.
D. m=0.