\(x.P\left(x-1\right)=\left(x-2\right).P\left(x\right)\) (1)
Thay \(x=0\) vào (1) \(\Rightarrow0.P\left(-1\right)=-2.P\left(0\right)\Rightarrow P\left(0\right)=0\)
\(\Rightarrow x=0\) là 1 nghiệm của đa thức
Thay \(x=2\) vào (1):
\(2.P\left(1\right)=0.P\left(2\right)\Rightarrow P\left(1\right)=0\)
\(\Rightarrow x=1\) là 1 nghiệm của đa thức
\(\Rightarrow\) \(P\left(x\right)\) có ít nhất 2 nghiệm \(x=0;x-1\)
Mà bậc P(x) nhỏ hơn 4 nên P(x) tối đa có bậc 3
\(\Rightarrow P\left(x\right)=k.x.\left(x-1\right).\left(ax+b\right)\) với \(k\ne0\)
Thay vào (1)
\(\Rightarrow x.k\left(x-1\right)\left(x-2\right)\left(ax-a+b\right)=kx\left(x-1\right)\left(x-2\right)\left(ax+b\right)\)
\(\Rightarrow kx\left(x-1\right)\left(x-2\right)\left(ax-a+b-ax-b\right)=0\)
\(\Rightarrow kx\left(x-1\right)\left(x-2\right).\left(-a\right)=0\)
\(\Rightarrow a=0\)
\(\Rightarrow P\left(x\right)=a.x.\left(x-1\right)\) với a là số thực khác 0 bất kì