Tìm tất cả các bộ ba số nguyên \(\left(x,y,z\right)\) thỏa mãn
\(2\left(x+y+z+2xyz\right)^2=\left(2xy+2yz+2zx+1\right)^2+2023\)
Cho x,y,z là ba số dương thỏa mãn x+y+z=1. Tìm giá trị nhỏ nhất của biểu thức
\(M=\frac{1}{x^2+y^2+z^2}+\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)
Cho số thực dương x,y,z thỏa mãn điều kiện xy+yz+zx=xyz. Tìm min của P=\(\frac{x}{y^2}\)+ y/z^2+z/x^2+6(\(\frac{1}{xy}\)+1/yz+1/zx)
Cho 2 số thực dương x,y thỏa mãn \(x+y=5\). Tìm GTNN của \(P=\frac{4x+y}{xy}+\frac{2x-y}{4}\)
1. Chứng minh rằng mọi hàm \(f:ℝ\rightarrowℝ\) thỏa mãn \(f\left(xy+x+y\right)=f\left(xy\right)+f\left(x\right)+f\left(y\right),\forall x,y\inℝ\)
2. Xác định tất cả các hàm số \(f\) liên tục trên \(ℝ\) thỏa mãn điều kiện \(f\left(2x-y\right)=2f\left(x\right)-f\left(y\right),\forall x,y\inℝ\)
Cho các số thực x,y thỏa mãn \(2x^2+y^2+xy\ge1.\) Biết rằng giá trị nhỏ nhất của biểu thức \(M=x^2+y^2\) có dạng \(\frac{a-b\sqrt{b}}{c}\), trong đó a,b,c là các số nguyên dương
Cho x,y,z là các số thực dương thỏa mãn x+y+z=2. Tìm Giá trị nhỏ nhất của biểu thức
\(T=\frac{x^3}{y^2+z}+\frac{y^3}{z^2+x}+\frac{z^3}{x^2+y}\)
Cho các sô thực dương x,y,z thỏa mãn xy+yz+zx=3 .CMR:\(\frac{1}{xyz}+\frac{4}{\left(x+y\right)\left(y+z\right)\left(z+x\right)}\ge\frac{3}{2}\)
1. Tìm tất cả các giá trị của \(a\) sao cho tồn tại duy nhất một hàm \(f:ℝ\rightarrowℝ\) thỏa mãn điều kiện \(f\left(x^2+y+f\left(y\right)\right)=\left[f\left(x\right)\right]^2+ay,\forall x,y\inℝ\)
2. Tìm tất cả các hàm \(f:ℝ^+\rightarrowℝ^+\) thỏa mãn \(f\left(x\right).f\left(y\right)=f\left(x+yf\left(x\right)\right),\forall x,y\inℝ^+\)
Giúp mình 2 bài này với, ngày mai là mình phải nộp rồi, cảm ơn các bạn trước nhé.