Ta có: x + x < ( 2 x + 3 ) ( x - 1 )
Điều kiện: x ≥ 0
⇔ x + x < 2 x - 2 x + 3 x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3
Vậy bất phương trình đã cho có tập nghiệm là x > 3
Ta có: x + x < ( 2 x + 3 ) ( x - 1 )
Điều kiện: x ≥ 0
⇔ x + x < 2 x - 2 x + 3 x - 3
⇔ - x < - 3 ⇔ x > 3
Kết hợp điều kiện, tập nghiệm bất phương trình là: x > 3
Vậy bất phương trình đã cho có tập nghiệm là x > 3
Tìm tập nghiệm của các bất phương trình sau: x + x < 2 x + 3 x - 1
Tìm tập nghiệm của các bất phương trình sau: ( x - 3 ) ( x - 2 ) ≥ 0
Tìm tập nghiệm của các bất phương trình sau: ( x - 3 ) ( x - 2 ) ≥ 0
Tìm tập nghiệm của các bất phương trình sau: x + 3 2 ≥ x − 3 2 + 2
A. x ≥ 3 6
B. x ≤ 3 6
C. x ≥ 3 3
D. x < 3 3
Tìm tập nghiệm của các bất phương trình sau: x + 3 2 ≥ x - 3 2 + 2
Giải các bất phương trình sau và biểu diễn tập nghiệm trên trục số
a) 2x - 1 ≥ 5
b) x-2 /3 ≥ x - x-1 /2
Giải các phương trình sau : 2 4x – 2 a) 2x - 3 = 5 b) (x + 2)(3x - 15) 0 z +1 I - 2 (x+ 1) (2 – 2) Câu 2: (2 điểm) số a) Giải bất phương trình sau và biểu diễn tập nghiệm trên trục 2x + 2 <2+ 3 b) Tìm x để giá trị của biểu thức 3x - 4 nhỏ hơn giá trị của biểu thức 5x - 6
Giải các bất phương trình sau và viết tập nghiệm bằng kí hiệu tập hợp:
a) x + 2 7 − 1 21 > 3 x + 1 3 ; b) 1 + x − 2 3 > 5 − x + 3 ( x − 2 ) 3
Bài 2: Giải các bất phương trình sau và biểu diện tập nghiệm của mỗi bất phương trình trên một trục số
a. 2x – 3 > 3(x – 2) b.12x+1/12 <_ 9x +1/3 - 8x +1/4
/ : phần