\(\hept{\begin{cases}\overline{abc}=n^2-1\\\overline{cba}=n^2-n-99\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}100a+10b+c=n^2-1\left(1\right)\\100c+10b+a=n^2-n-99\left(2\right)\end{cases}}\). Lấy (1) trừ (2) :
\(99\left(a-c\right)=n+98\Leftrightarrow a-c=\frac{n+98}{99}\)
Vì \(100\le\overline{abc}\le999\) nên \(100\le n^2-1\le999\Rightarrow11\le n\le31\) (vì n là số tự nhiên)
Gán 10 -> D
D = D+1 : (D+98)/99
Bấm liên tục dấu "=" . Nhận các giá trị nguyên của D , đó chính là giá trị của n.