n.n+2 \(⋮\)n+1
=>\(n^2\)+2\(⋮\)n+1
=>\(n^2\)+2-(n+1)\(⋮\)n+1
=>\(n^2\)+2-n(n+1)\(⋮\)n+1
=>\(n^2\)+2-\(n^2\)-n\(⋮\)n+1
=>2-n\(⋮\)n+1
=>2-n+n+1\(⋮\)n+1
=>3\(⋮\)n+1
=>n+1\(\in\)Ư(3)={\(\mp\)1;\(\mp\)3}
=>n\(\in\){0;-2;2;-4}
Vậy n\(\in\){0;2;-2;-4} thì n.n+2 \(⋮\)n+1
vì n.n+2chia hết cho n+1
ta có:
n.n+2=n^2 +2 =n.(n+1)-n +2=n.(n+1)-(n+1)+1 chia hết cho n+1
mà n.(n+1)-(n+1)chia hết cho n+1
=> 1chia hết cho n+1
=> n+0