Mik làm vậy các bn xem đúng ko nha
Vì abc < ab + bc + ca
<=> \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\left(1\right)\)
Giả sử a > b > c => \(\frac{1}{a}< \frac{1}{b}< \frac{1}{c}\)
\(1< \frac{1}{a}+\frac{1}{b}+\frac{1}{c}< \frac{1}{c}+\frac{1}{c}+\frac{1}{c}=\frac{3}{c}\)=> c < 3 => c= 2
Thay c = 2 vào (1) ta được :
\(\frac{1}{2}< \frac{1}{a}+\frac{1}{b}< \frac{1}{b}+\frac{1}{b}=\frac{2}{b}=>2< b< 4=>b=3\)
thay b = 3 , c = 2 ta được
\(\frac{1}{a}>1-\frac{1}{2}-\frac{1}{3}=\frac{1}{6}=>a< 3< 6=>a=5\)
Vậy bộ số ( a ; b ;c ) = ( 2 ; 3 ; 5 )
Giả sử a = 2 ; b = 3 ; c = 5
=> a . b . c = 2 . 3 . 5 = 30
=> ab + bc + ca = ( 2.3 ) + ( 3 . 5 ) + ( 2 . 5 )
=> ab + bc + ca = 6 + 15 + 10
=> ab + bc + ca = 31
Mak 30 \(\ne\)31
=> Bn nguyễn thị thanh thảo làm sài!
mình giải thích \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}>1\)vì \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{b}{ab}+\frac{a}{ab}+\frac{1}{c}=\frac{a+b}{ab}+\frac{1}{c}=\frac{c.\left(a+b\right)}{abc}+\frac{ab}{abc}=\frac{ac+bc+ab}{abc}\)Mà abc<ab+bc+ca=>\(\frac{ab+bc+ac}{abc}\)>1