\(\Rightarrow\left(2x+1\right)\left(y-3\right)=15=1\cdot15=3\cdot5\)
Với \(x\in N\Rightarrow2x+1\ge1;2x+1\) lẻ
\(\left\{{}\begin{matrix}2x+1=1\\y-3=15\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=0\\y=18\end{matrix}\right.\\ \left\{{}\begin{matrix}2x+1=15\\y-3=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=7\\y=4\end{matrix}\right.\\ \left\{{}\begin{matrix}2x+1=3\\y-3=5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=1\\y=8\end{matrix}\right.\\ \left\{{}\begin{matrix}2x+1=5\\y-3=3\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=3\\y=6\end{matrix}\right.\)
Vậy \(x\in\left\{0;1;3;7\right\}\)