\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{x\left(x+1\right)}=\frac{2008}{2009
}\)
\(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{x+1-1}{x+1}=\frac{2008}{2009}\)
\(\frac{x}{x+1}=\frac{2008}{2009}\)
\(2009x=2008\left(x+1\right)\)
\(2009x=2008x+2008\)
\(2009x-2008x=2008\)
\(x=2008\)
Vậy x=2008
Ta có
1/x.(x+1) =2008-1/1.2-1/2.3-....
tự làm nhé!!
=> \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + \(\frac{1}{4.5}\) +...+\(\frac{1}{x\left(x+1\right)}\) = \(\frac{2008}{2009}\)
=> \(\frac{1}{1}\) - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) +...+ \(\frac{1}{x}\) - \(\frac{1}{x+1}\) = \(\frac{2008}{2009}\)
=> \(\frac{1}{1}\) - \(\frac{1}{x+1}\) = \(\frac{2008}{2009}\) => \(\frac{1}{x+1}\) = \(\frac{1}{1}\) - \(\frac{2008}{2009}\) = \(\frac{1}{2009}\) => x+1=2009 => x=2008. Vậy x=2008.
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+......+\frac{1}{x.\left(x+1\right)}=\frac{2008}{2009}\)
\(1-\frac{1}{x+1}=\frac{2008}{2009}\)
\(\frac{1}{x+1}=\frac{1}{2009}\)
=)x+1=2009
=)x=2008
Vậy x=2008