Ta có: \(\overline{aaa}=1+2+...+n=\frac{n\left(n+1\right)}{2}\)
\(\Rightarrow\frac{n\left(n+1\right)}{2}=111a\Rightarrow n\left(n+1\right)=2.111a=2.3.37.a\)
Vì n(n+1) chia hết cho 37 nên một trong hai số chia hết cho 37
Mà \(\frac{n\left(n+1\right)}{2}\) là số có ba chữ số nên n và n+1 nhỏ hơn 74 => n=37 hoặc n+1=37
Nếu n=37 thì n+1=38 => \(\overline{aaa}=\frac{n\left(n+1\right)}{2}=\frac{37.38}{2}=703\) (loại)
Nếu n+1=37 thì n=36 => \(\overline{aaa}=\frac{n\left(n+1\right)}{2}=\frac{36.37}{2}=666\) (thỏa mãn)
Vậy n=36 và aaa = 666