a) 3 ⋮ n ó n ∈ Ư (3). Ta có Ư (3) = {1;3}. Vậy n ∈ { 1;3}.
b) 3 ⋮ (n + l) ó (n + l) ∈ Ư (3). Ta có Ư (3) = {1;3}.
Vậy (n + l) ∈ {l ;3} => n ∈ {0; 2}.
c) Ta có: (n - 3) ⋮ (n - 1) và (n - 1) ⋮ (n -1);
Áp dụng tính chất chia hết của tổng (hiệu) ta có:
(n + 3) - (n + 1 ) ⋮ ( n+ l) ó 2 ⋮ ( n + 1) <=> ( n +1) ∈ Ư (2) = {1;2}
Từ đó n ∈ {0;l}.
d) Ta có (2n + 3) ⋮ (n - 2) và (n - 2) ⋮ (n - 2) =>2 (n - 2) ⋮ (n - 2);
Áp dụng tính chất chia hết của tổng (hiệu) ta có
(2n + 3)(n - 2) ⋮ (n - 2) <=> 7 ⋮ (n - 2) ó (n - 2) ∈ Ư(97) = {1;7}.
Từ đó n ∈ {3;9}