n4 + 4 = (n4 + 4n2 +4) - 4n2 = (n2 + 2)2 - (2n)2
Ta có:n2 + 2n + 2 = (n+1)2 + 1\(\ge\)với \(n\in N\)
n2 - 2n + 2 = (n-1)2 + 1\(\ge\)với \(n\in N\)
Để n4 + 4 là số ngto => chỉ có 2 số là 1 và chính nó
=>n2 + 2n + 2 = n4 +4 và n2 - 2n + 2 = (n-1)2+1=1
(n-1)2+1=1=>n-1=0=>n=1
n=1 thì n4 là số ngto
Vậy không có số nào thỏa mãn điều kiện