\(n^2-2n-10\)
\(=n^2-2n+1-11\)
\(=\left(n-1\right)^2-11\)
\(n^2-2n-10=k^2\left(k\in N\right)\)\(\Leftrightarrow\left(n-1\right)^2-k^2=11\Leftrightarrow\left(n-1-k\right)\left(n-1+k\right)=11\)\(=1\cdot11=11\cdot1=-1\cdot-11=-11\cdot-1\)
Giải 4 trường hợp ta được (n;k) = (7;5), (7;-5), (-5;-5), (-5;5) mà n,k thuộc số tự nhiên suy ra n = 7
Vậy với n = 7 và thì biểu thức là số chính phương.
giả sử n^2+n+2=k^2=> k^2>n^2<==>k>n (1)
ta có n^2+n-2=k^2-4
<==>(n-1)(n+2)=(k-2)(k+2) (2)
@ nếu n=1 , k=2, đúng
@ nếu n khác 1
ta có n+2<k+2 (từ (1))
==> để (2) xẩy ra thì: n-1>k-2
mà từ (1) ta có k-1>n-1
nên: k-1>n-1>k-2
do k-1 và k-2 hai hai số tự nhiên liên tiếp nên không thể tồn tại số tự nhiên nằm giữa chúng (n-1)
vậy chỉ có n=1 là nghiệm!