Đặt d = ( n + 1; 7n + 4 )
Ta có: \(\hept{\begin{cases}7n+4⋮d\\n+1⋮d\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮d\\7n+7=7\left(n+1\right)⋮d\end{cases}}\Rightarrow\left(7n+7\right)-\left(7n+4\right)⋮d\)
=> \(3⋮d\Rightarrow d\in\left\{1;3\right\}\)=> d có thể bằng 3 hoặc bằng 1
Với d = 3 ta có: \(\hept{\begin{cases}7n+4⋮3\\n+1⋮3\end{cases}}\Rightarrow\hept{\begin{cases}7n+4⋮3\\6n+6=6\left(n+1\right)⋮3\end{cases}}\Rightarrow\left(7n+4\right)-\left(6n+6\right)⋮3\)
=> \(n-2⋮3\)
=> Tồn tại số tự nhiên k sao cho : n - 2 = 3k => n = 3k + 2
=> n khác 3k + 2 thì d khác 3
hay n khác 3k + 2 thì d = 1
=> n khác 3k + 2 thì n + 1 và 7n + 4 là hai số nguyên tố cùng nhau.