1.c)1. Xét nn chẵn, hai số đều chẵn →→ không nguyên tố cùng nhau
2.2. Xét nn lẻ, ta chứng minh 22 số này luôn nguyên tố cùng nhau
9n+24=3(3n+8)9n+24=3(3n+8)
Vì 3n+43n+4 không chia hết cho 33, nên ta xét tiếp 3n+83n+8
Giả sử kk là ước số của 3n+83n+8 và 3n+43n+4, đương nhiên kk lẻ (a)(a)
→k→k cũng là ước số của (3n+8)−(3n+4)=4→k(3n+8)−(3n+4)=4→k chẵn (b)(b)
Từ (a)(a) và (b)→(b)→ Mâu thuẫn
Vậy với nn lẻ, 22 số đã cho luôn luôn nguyên tố cùng nhau