n2 + 2n + 7 chia hết cho n + 2
=> n(n+2)+7 chia hết cho n+2
Vì n(n+2) chia hết cho n+2
=> 7 chia hết cho n+2
=> n+2 thuộc Ư(7)
n+2 | n |
1 | -1 |
-1 | -3 |
7 | 5 |
-7 | -9 |
Mà n là số tự nhiên
=> n = 5
Ta có : (n^2+2n)+7
=n.(n+2)+7
Vì n.(n+2) chia hết cho n+2 =>n.(n+2)+7 chia hết cho n+2 <=>7 chia hết cho n+2
=>n+2 \(\in\)Ư(7)
=>n+2 \(\in\){-7;-1;1;7}
=>n\(\in\){-9;-3;-1;5}
Vậy khi n\(\in\){-9;-3;-1;5} thì n^2+2n+7 chia hết cho n+2