Ta có : vì \(n\inℕ\)=> \(n+1\inℕ\)
Để \(\frac{3n+1}{n+1}\inℕ\)
=> \(3n+1⋮n+1\)
=> \(3n+3-2⋮n+1\)
=> \(3.\left(n+1\right)-2⋮n+1\)
Ta có : Vì \(3.\left(n+1\right)⋮n+1\)
=> \(-2⋮n+1\)
=> \(n+1\inƯ\left(-2\right)\)
=> \(n+1\in\left\{1;2\right\}\)
Lập bảng xét các trường hợp
\(n+1\) | \(1\) | \(2\) |
\(n\) | \(0\) | \(1\) |
Vậy \(\frac{3n+1}{n+1}\inℕ\Leftrightarrow n\in\left\{0;1\right\}\)