Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Quỳnh

Tìm số tự nhiên n để :

a,3n+1 chia hết cho 7

b,2n+1 và 7n+2 nguyên tố cùng nhau

Hồ Thu Giang
19 tháng 7 2015 lúc 9:37

3n+1 chia hết cho 7

=> 3n+1 thuộc B(7)

=> 3n+1 = 7k

=> 3n = 7k-1

=> n = \(\frac{7k-1}{3}\)

Gọi ƯCLN(2n+1; 7n+2) là d. Ta có:

2n+1 chia hết cho d => 14n+7 chia hết cho d

7n+2 chia hết cho d => 14n+4 chia hết cho d

=> 14n+7-(14n+4) chia hết cho d

=> 3 chia hết cho d

Giả sử 2 số này không nguyên tố cùng nhau

=> 2n+1 chia hết cho 3

=> 2n+1-3 chia hết cho 3

=> 2n-2 chia hết cho 3

=> 2(n-1) chia hết cho 3

=> n-1 chia hết cho 3

=> n = 3k+1

Vậy để 2n+1 và 7n+2 nguyên tố cùng nhau thì n \(\ne\) 3k+1