\(\frac{1}{1.3}+\frac{1}{4.7}+\frac{1}{7.10}+...+\frac{1}{n\left(n+3\right)}=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{3}.\left(\frac{3}{1.4}+\frac{3}{4.7}+\frac{3}{7.10}+...+\frac{3}{n\left(n+3\right)}\right)=\frac{2018}{6057}\)
\(\Rightarrow\frac{1}{1}-\frac{1}{4}+\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+...+\frac{1}{n}-\frac{1}{n+3}=\frac{2018}{6057}.3\)
\(\Rightarrow1-\frac{1}{n+3}=\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=1-\frac{2018}{2019}\)
\(\Rightarrow\frac{1}{n+3}=\frac{1}{2019}\)
\(\Rightarrow n+3=2019\)
\(\Rightarrow n=2016\)
Vậy n = 2016