Đại số lớp 8

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kenny Hoàng

Cho 3 số dương a, b, c thoả mãn: abc = 1
Tìm GTNN của \(P=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

 
Lightning Farron
10 tháng 1 2017 lúc 18:07

\(P=\frac{1}{a^3\left(b+c\right)}+\frac{1}{b^3\left(a+c\right)}+\frac{1}{c^3\left(a+b\right)}\)

\(=\frac{bc}{a^2\left(b+c\right)}+\frac{ac}{b^2\left(a+c\right)}+\frac{ab}{c^2\left(a+b\right)}\left(abc=1\right)\)

\(=\frac{1}{a^2\left(\frac{1}{c}+\frac{1}{b}\right)}+\frac{1}{b^2\left(\frac{1}{c}+\frac{1}{a}\right)}+\frac{1}{c^2\left(\frac{1}{b}+\frac{1}{a}\right)}\)

\(=\frac{\frac{1}{a^2}}{\frac{1}{c}+\frac{1}{b}}+\frac{\frac{1}{b^2}}{\frac{1}{c}+\frac{1}{a}}+\frac{\frac{1}{c^2}}{\frac{1}{b}+\frac{1}{a}}\)

Đặt \(\left\{\begin{matrix}\frac{1}{a}=x\\\frac{1}{b}=y\\\frac{1}{c}=z\end{matrix}\right.\) suy ra \(xyz=1\). Khi đó:

\(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\)

Áp dụng BĐT AM-GM ta có:

\(\left\{\begin{matrix}\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\\\frac{y^2}{x+z}+\frac{x+z}{4}\ge y\\\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\end{matrix}\right.\).Cộng theo vế ta có:

\(P+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow P\ge\frac{x+y+z}{2}\ge\frac{3}{2}\left(x+y+z\ge3\sqrt[3]{xyz}=3\right)\)


Các câu hỏi tương tự
No ri do
Xem chi tiết
thanh ngọc
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
byun aegi park
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
♡ ♡ ♡ ♡ ♡
Xem chi tiết
Luu Tuy
Xem chi tiết
Chu Ngọc Ngân Giang
Xem chi tiết