2n+ 2n-2 = 2n + 2n : 22 = 5/2
=> (2^n).2 = 5/2 . 4
2^n . 2 = 10
2^n = 10 : 2
2^n = 5
Vậy không tồn tại n
\(2^n+2^{n-2}=\frac{5}{2}\)
\(2^n:2^2=\frac{5}{2}-\frac{2^n}{1}=\frac{5-2^{n+1}}{2}\)
\(2^n=\frac{5-2^{n+1}}{2}.2^2=2.\left(5-2^{n+1}\right)\)
\(2^n=10-2^{n+2}\)