\(2A+3=3^n\)
\(\Rightarrow2A=3^n-3\)
\(\Rightarrow A=\frac{3^n-3}{2}\left(n\in N\right)\)
\(2A+3=3^n\)
\(\Rightarrow2A=3^n-3\)
\(\Rightarrow A=\frac{3^3-3}{2}\left(n\in N\right)\)
Ta có:
\(2A+3=3^n\)
\(\Rightarrow2A=3^n-3\)
\(\Rightarrow A=\frac{3^n-3}{2}\)