Gọi số có 2 chữ số cần tìm là \(\overline{ab}\left(a\ne0,a;b\in N\right)\)
Khi viết thêm một chữ số 2 vào bên trái và 1 chữ số 2 vào bên phải thì được số mới \(\overline{2ab2}\)
Mà số mới hơn số cũ 135 lần nên ta có phương trình :
\(\overline{2ab2}\div\overline{ab}=135\)
\(\Leftrightarrow135\times\overline{ab}=\overline{2ab2}\)
\(\Leftrightarrow135\times\left(10a+b\right)=2000+100a+10b+2\)
\(\Leftrightarrow1350a+135b=2002+100a+10b\)
\(\Leftrightarrow1250a+125b=2002\)
\(\Leftrightarrow125\times\left(10a+b\right)=2002\)
\(\Leftrightarrow\overline{ab}=\frac{2002}{125}\)
\(\Rightarrow\) Sai đề.