Tìm số tự nhiên a lớn nhất sao cho khi chia các số 437,509,725 cho a thì cùng số dư
Tìm số tự nhiên a lớn nhất sao cho các số 2025; 1753; 1289 khi chia cho a có cùng một số dư.
1.Tìm số tự nhiên a lớn nhất sao cho khi chia 346;414;539 cho a thì có cùng số dư
2.Tìm 2 số tự nhiên a,b biết a+b=128 và ƯCLN(a,b)=16
a)tìm số tự nhiên a lớn nhất sao cho 13;15;61 chia cho a đều dư 1
b)tìm số tự nhiên a lớn nhất biết 149 chia cho a dư 29; 235 chia cho a dư 35
c)tìm số tự nhiên a biết khi chia 268 cho a dư 18; 390 chia cho a dư 40
a. chứng tỏ rằng với mọi số tự nhiên n thì các số nguyên sau là nguyên tố cùng nhau: 2n+5 và 4n+12
b. tìm số tự nhiên n lớn nhất sao cho khi chia 540, 415, 365 cho n thì được ba số dư bằng nhau
a) Tìm số tự nhiên nhỏ nhất có ba chữ số biết rằng số đó khi chia cho 11 thì du5, khi chia cho 13 thì dư 8
b) Tìm số tự nhiên a lớn nhất có ba chữ số, biết rằng a chia cho các số 20 ; 25 ; 30 đều dư 15.
Bài 10. Tìm số tự nhiên n nhỏ nhất sao cho khi chia n cho 5,7,11 thì được các số dư tương ứng
là 3,4,6.
Bài 11. Tìm số tự nhiên n lớn nhất có ba chữ số sao cho khi chia n cho 5,8,7 được các số dư
tương ứng là 2,3,5.
Bài 12. Tìm số tự nhiên n>0 nhỏ nhất sao cho n có thể viết thành tổng của ba số tự nhiên liên
tiếp và tổng của 7 số tự nhiên liên tiếp lớn hơn 0.
Bài 13. Tìm số tự nhiên n nhỏ nhất sao cho n có thể viết thành tổng của 4 số tự nhiên liên tiếp,
5 số tự nhiên liên tiếp và 6 số tự nhiên liên tiếp lớn hơn 0.
a,Tìm số tự nhiên nhỏ nhất có chữ số hàng đơn vị là 5,chia cho 11 dư 4,chia cho 13 dư 6 và chia hết cho 7
b,Tìm số tự nhiên lớn nhấ có 4 chữ số sao cho khi đem số đó lần lượt chia cho các số 11,13 và 17 thì đều có số dư bằng 7
1.Chứng minh rằng các số sau đây nguyên tố cùng nhau:
a) Hai số lẻ liên tiếp.
b) 2n+5 và 3n+7 (n là số tự nhiên)
2.Ước chung lớn nhất của hai số là 45. Số lớn là 270. Tìm số nhỏ.
3.Tìm số tự nhiên a nhỏ nhất có 3 chữ số sao cho chia cho 11 thì dư 5, chia cho 13 thì dư 8.