Ta có: \(2n+14⋮n+2\)
\(\Rightarrow2\left(n+2\right)+10⋮n+2\)
\(\Rightarrow10⋮n+2\)
Vì \(n\in N\Rightarrow n+2\inƯ\left(10\right)=\left\{\mp1;\mp2;\mp5;\mp10\right\}\)
Ta có bảng sau:
n+2 | 1 | -1 | 2 | -2 | 5 | -5 | 10 | -10 |
n | -1 | -3 | 0 | -4 | 3 | -7 | 8 | -12 |
Vì \(n\in N\Rightarrow n\in\left\{0;3;8\right\}\)
Vậy \(n\in\left\{0;3;8\right\}\)
Bài giải
Ta có: 2n + 14 \(⋮\)n + 2
=> 2(n + 2) + 10 \(⋮\)n + 2
Vì 2(n + 2) + 10 \(⋮\)n + 2 và 2(n + 2) \(⋮\)n + 2
Nên 10 \(⋮\)n + 2
Suy ra n + 2 \(\in\)Ư (10)
Ư (10) = {1; 10; 2; 5}
Lập bảng:
n + 2 = 1 | n + 2 = 10 | n + 2 = 2 | n + 2 = 5 |
n = 1 - 2 | n = 10 - 2 | n = 2 - 2 | n = 5 - 2 |
n = -1 (loại vì n \(\inℕ\)) | n = 8 | n = 0 | n = 3 |
Vậy n \(\in\){8; 0; 3}