Ta có: xy - x + 2y = 3
=> x(y - 1) + 2(y - 1) + 2 = 3
=> (x + 2)(y - 1) = 1
=> x + 2; y - 1 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 2 | 1 | -1 |
y - 1 | 1 | -1 |
x | -1 | -3 |
y | 2 | 0 |
Vậy ....
\(xy-x+2y=3\)
\(\Leftrightarrow x\left(y-1\right)+2y-2=1\)
\(\Leftrightarrow x\left(y-1\right)+2\left(y-1\right)=1\)
\(\Leftrightarrow\left(y-1\right)\left(x+2\right)=1\)
\(\Rightarrow y-1\) và \(x+2\) \(\inƯ\left(1\right)\)
\(\RightarrowƯ\left(1\right)=\left\{-1;1\right\}\)
\(\Rightarrow\hept{\begin{cases}x+2=-1\\y-1=1\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\y=2\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}x+2=1\\y-1=-1\end{cases}}\Rightarrow\hept{\begin{cases}x=-1\\y=0\end{cases}}\)
Vậy \(\left(x;y\right)=\left(-3;2\right)\)
\(=\left(-1;0\right)\)
Sorry, phần cuối để cùng dấu nhé!
\(\text{xy - x + 2y-3 = 0}\)
\(\text{xy - x + 2y-3+1 = 1}\)
\(x\left(y-1\right)+2\left(y-1\right)=1\)
\(\left(y-1\right).\left(x+2\right)=1\)
\(\Rightarrow\left[\begin{matrix}y-1=1;-1\\x+2=1;-1\end{matrix}\right.\)
\(y=\left\{2;0\right\},x=\left\{-1;-3\right\}\)
Thank các bạn nhé