\(t=\frac{x+7}{x-3}=\frac{x-3+10}{x-3}=\frac{x-3}{x-3}+\frac{10}{x-3}=1+\frac{10}{x-3}\)
Để t là số nguyên khi \(\frac{10}{x-3}\)là số nguyên
\(\Rightarrow\left(x-3\right)\inƯ\left(10\right)\)\(=\left\{\pm1;\pm2;\pm5;\pm10\right\}\)
\(x-3\) | \(-1\) | \(1\) | \(-2\) | \(2\) | \(-5\) | \(5\) | \(-10\) | \(10\) |
\(x\) | \(2\) | \(4\) | \(1\) | \(5\) | \(-2\) | \(8\) | \(-7\) | \(13\) |
Vậy \(x\in\left\{-7;-2;1;2;4;5;8;13\right\}\)để t là số nguyên