Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để \(A=\dfrac{4x+1}{6x-3}\) nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { \(\pm1;\pm3;\pm9\) }
Lập bảng giá trị
6x - 3 | 1 | 9 | -1 | -9 | 3 | -3 |
x | \(\dfrac{2}{3}\) \(\notin\) Z ( loại ) | 2 | \(\dfrac{1}{3}\notin\) Z ( loại ) | -1 | 1 | 0 |
Vậy x ϵ { 2; -1; 1; 0 } để \(A=\dfrac{4x+1}{6x-3}\) nguyên
Vì x nguyên nên 4x + 1 và 6x - 3 nguyên
Để nguyên thì ( 4x + 1 ) ⋮ ( 6x - 3 )
Ta có [ 3( 4x + 1 )] ⋮ ( 6x - 3 ) hay ( 12x + 3 ) ⋮ ( 6x - 3 )
[ 2( 6x - 3 )] ⋮ ( 6x - 3 ) hay ( 12x - 6 ) ⋮ ( 6x - 3 )
⇒ [( 12x + 3 ) - ( 12x - 6 )] ⋮ ( 6x - 3 )
( 12x + 3 - 12x + 6 ) ⋮ ( 6x - 3 ) ⇒ 9 ⋮ ( 6x - 3 ) hay ( 6x - 3 ) ϵ Ư( 9 )
Ư( 9 ) = { }
Lập bảng giá trị
6x - 3 | 1 | 9 | -1 | -9 | 3 | -3 |
x | Z ( loại ) | 2 | Z ( loại ) | -1 | 1 | 0 |
Vậy x ϵ { 2; -1; 1; 0 } để nguyên
nhớ đánh giá nhé >-<
Ta có \(A=\dfrac{4x-1}{6x-3}\) \(\Leftrightarrow\left(6x-3\right)A=4x-1\) \(\Leftrightarrow3A\left(2x-1\right)-2\left(2x-1\right)=1\) \(\Leftrightarrow\left(2x-1\right)\left(3A-2\right)=1\). Ta chỉ có 2 trường hợp là \(\left\{{}\begin{matrix}2x-1=1\\3A-2=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\A=1\end{matrix}\right.\) (nhận) hoặc \(\left\{{}\begin{matrix}2x-1=-1\\3A-2=-1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=0\\A=\dfrac{1}{3}\end{matrix}\right.\)(loại).
Vậy để \(A\inℤ\) thì \(x=1\)