Ta có :
\(2x^2-x+2\)
\(=2x^2+x-2x+2\)
\(=\left(2x^2+x\right)+2-2x\)
\(=x\left(2x+1\right)+2-2x\) \(\text{⋮}\)\(2x+1\)
Mà \(x\left(2x+1\right)\)\(\text{⋮}\)\(2x+1\)
\(\Rightarrow2-2x\)\(\text{⋮}\)\(2x+1\)
Mà \(2x+1\)\(\text{⋮}\)\(2x+1\)
\(\Rightarrow\left(2-2x\right)+\left(2x+1\right)\)\(\text{⋮}\)\(2x+1\)
\(\Rightarrow3\)\(\text{⋮}\)\(2x+1\)
\(\Rightarrow2x+1\inƯ\left(3\right)=\left\{-3;-1;1;3\right\}\)
\(2x\in\left\{-4;-2;0;2\right\}\)
\(x\in\left\{-2;-1;0;1\right\}\)
Vậy ...