Nếu p chia cho 3 dư 1 thì p+94 chia hết cho 3=> vô lí
Nếu p chia cho 3 dư 2 thì p+1994 chia hết cho 3=> vô lí
vậy p chia hết cho 3=> p=3 vì là số nguyên tố
(+) p = 2 => 2 + 94 = 96 ko là số nguyên tố
(+) p = 3 ; 3 + 94 = 97 ; 3 + 1994 = 1997 là số nguyên tố
(+) p> 3 => p = 3k +1 ; 3k +2
p = 3k + 1 => p + 1994 = 3k + 1 + 1994 = 3k + 1995 = 3 ( k + 665 ) chia hết cho 3 ( loại )
p = 3k + 2 => p +9 4 = 3k + 2 + 94 = 3k + 96 = 3 ( k + 32 ) chia hết cho 3 ( loại )
Vậy p = 3 thỏa mãn
1. số nguyên tố p không thể có dạng 3n + 1 (tức chia 3 dư 1) vì lúc đó
p + 1994 = 3n + 1995 = 3*(n + 665) là tích 2 số đều > 2 nên là hợp số. Số nguyên tố p cũng không thể có dạng 3n + 2 (tức chia 3 dư 2) vì lúc đó p + 94 = 3n + 96 = 3*(n + 32) là tích 2 số đều > 2 nên là hợp số. Vậy p phải chia hết cho 3, mà p là số nguyên tố nên p = 3.
=> chỉ có 1 số nguyên tố thỏa mãn đk.
2. Bạn ghi lại vì không có cặp (x, y, z, t) thỏa mãn đk. Ví dụ làm gì có x sao cho 27/4 = -x/3 vì lúc đó x = -81 / 4 đâu có là số nguyên
3. (7n² + 1)/6 = k với k tự nhiên
=> n² + 1 = 6k - 6n² = 6(k - n²) ♥
VP của ♥ chẵn nên VT cũng phải chẵn => n lẻ, tức n không có ước nguyên tố 2 => n / 2 là phân số tối giản
VP của ♥ chia hết cho 3 nên VT cũng phải chia hết cho 3 => n không có ước nguyên tố 3 (vì khi đó VT chia 3 dư 1)
Với p = 2 suy ra p + 94 và p + 1994 đều là hợp số.
Với p = 3 suy ra p + 94 = 97 và p + 1994 = 1997 đều là các số nguyên tố.
Với p là số nguyên tố lớn hơn 3, chia p cho 3 ta được số dư là 1 hoặc 2.
Dùng phương pháp loại trừ nhé
Nếu p = 2 => 2 + 94 = 96 không phải là số nguyên tố
Nếu p = 3 ; 3 + 94 = 97 ; 3 + 1994 = 1997 là số nguyên tố
Nếu p > 3 => p = 3k +1 ; 3k +2 p = 3k + 1 => p + 1994 = 3k + 1 + 1994 = 3k + 1995 = 3 ( k + 665 ) chia hết cho 3 ( loại )
p = 3k + 2 => p + 94 = 3k + 2 + 94 = 3k + 96 = 3 ( k + 32 ) chia hết cho 3 ( loại )
Vậy p = 3