Xét \(p=2\) thì \(2p+1=5;4p+1=9\) không thỏa mãn.
Xét \(p=3\) thì \(2p+1=7;4p+1=13\), thỏa mãn.
Xét \(p>3\) thì \(p=3q+1;p=3q+2\left(q\inℕ^∗\right)\)
Nếu \(p=3q+1\) thì \(2p+1=2\left(3q+1\right)+1=6q+3⋮3\) . Hơn nữa \(6q+3>3\) nên \(2p+1\) là hợp số, không thỏa mãn.
Nếu \(p=3q+2\) thì \(4p+1=4\left(3q+2\right)+1=12q+9⋮3\) . Lại có \(12q+9>3\) nên \(4p+1\) là hợp số, không thỏa mãn.
Vậy \(p=3\) là số nguyên tố duy nhất thỏa mãn ycbt.