Giả sử p là số nguyên tố.
Nếu p = 2 thì p + 2 = 4 và p + 4 = 6 đều không phải là số nguyên tố.
Nếu p= 3 thì số nguyên tố p có 1 trong 3 dạng: 3k, 3k + 1, 3k + 2 với k N*.
+) Nếu p = 3k p = 3 p + 2 = 5 và p + 4 = 7 đều là các số nguyên tố. +) Nếu p = 3k +1 thì p + 2 = 3k + 3 = 3(k + 1) p + 2 3 và p + 2 > 3. Do đó p + 2 là hợp số.
+) Nếu p = 3k + 2 thì p + 4 = 3k + 6 = 3(k + 2) p + 4 3 và p + 4 > 3. Do đó p + 4 là hợp số. Vậy với p = 3 thì p + 2 và p + 4 cũng là các số nguyên tố.