P=\(\frac{n+2}{n-7}\)=\(\frac{\left(n-7\right)+7+2}{n-7}\)= 1+\(\frac{9}{n-7}\)
-Nếu n = 7 thì P không tồn tại
-Nếu n > 7 => n - 7 > 0 =>\(\frac{9}{n-7}\)> 0 => P > 1
-Nếu n < 7 => n - 7 < 0 => \(\frac{9}{n-7}\)< 0 => P < 1
Do đó ta chọn giá trị lớn nhất của P khi n > 7
Mà n \(\varepsilon\)Z => n - 7 \(\varepsilon\)Z và n - 7 > 0
=> n - 7 là số nguyên dương lớn nhất
=> n - 7 = 1
=> n = 7 + 1
=> n = 8
-Thay n = 8 vào P ta có :
P = \(\frac{8+2}{8-7}\)= \(\frac{10}{1}\)= 10
Vậy với giá trị nguyên n = 8 thi P đạt giá trị lớn nhất là 10